Space on the Wave Space on the Wave
i
Illustration by Joanna Grochocka
Outer Space

Space on the Wave

The Astronomy of Gravitational Waves
Piotr Stankiewicz
Reading
time 12 minutes

In 1915, Einstein predicted the existence of gravitational waves, or the vibration of space-time. 100 years later, scientists were finally able to observe them, opening a new chapter in the history of astrophysics and enabling us to peek into new areas in space.

It was 14th September 2015, 11:50 CET, when a message arrived on the mail account of Marc Drago at the Max Planck Institute in Hannover. This may seem like nothing out of the ordinary; after all, many people receive loads of automatically-generated messages, especially scientists. This time, however, it was one of the most important e-mails in the history of physics.

GW150914

The e-mail contained graphs of two signals: one detected at the observatory in Livingston on the Gulf of Mexico, and the other 3000 kilometres away in Hanford on the American West Coast. The signals were almost identical; moreover, they were registered nearly simultaneously, just 0.0067 seconds apart. It looked as if something had gone straight through Earth at tremendous speed. It was not a measuring error or a local interference in either laboratory (the two centres were established precisely to exclude this possibility). Further, it was neither a test signal sent by engineers to test procedures, nor a message from an alien civilization, as in the books of Sagan and Lem. So what was it?

The graphs showed a gravitational wave. Thus, the LIGO programme (Laser Interferometer Gravitational-Wave Observatory) could announce its first huge success. Some even claimed that it has been the greatest scientific discovery of the 21st century so far. Not only was Einstein’s theory of relativity confirmed yet another time, but also brand new vistas opened, inaugurating an entirely novel way of studying the universe.

The first gravitational wave observed by humanity was given a romantic name worthy of its import: GW150914. Its

Information

You’ve reached your free article’s limit this month. You can get unlimited access to all our articles and audio content with our digital subscription. If you have an active subscription, please log in.

Subscribe

Also read:

Dark Matters of the Universe Dark Matters of the Universe
i
Photo by Matt Gross/Unsplash
Outer Space, Science

Dark Matters of the Universe

The Invisible in Astronomy
Piotr Stankiewicz

Dark companions, dark matter, dark energy: astronomy finds the invisible more interesting than that which glows.

Some statements sound trite, but they are worth uttering anyway; and once we do utter them, they turn out not to be so trite after all. Take the (quite obvious) idea that, throughout the bulk of its history, astronomy’s only research material has been electromagnetic radiation reaching the Earth from space. The last several decades of new technology and space flights are but a tiny fraction of history. Most of the time, what the human study of space amounted to was this: we watched the visible spectrum as it arrived from the sky (in the 20th century, we also had radio waves and other electromagnetic spectra to contemplate), trying to analyse and make sense of our observations.

Continue reading