Oto spektakularne, misterne, zachwycające struktury, które trudno dostrzec, choć są wszechobecne.
Trudno je zdefiniować precyzyjnie, choć zazwyczaj charakteryzują się czterema cechami. Są to: nieskończona szczegółowość, samopodobieństwo, złożoność z prostoty oraz wymiary fraktalne. Wszystkie te właściwości wyjaśnimy poniżej.
Doskonałą ilustrację wspomnianych cech stanowi paproć. Wystarczy się jej dobrze przyjrzeć. Najpierw dostrzegamy nagromadzenie szczegółów. Co ciekawe, można zauważyć, że pod względem kształtu liście są miniaturowymi kopiami gałęzi. W istocie cała paproć to jeden kształt, powtarzający się w nieskończoność w coraz mniejszej skali. A najbardziej niesamowite jest to, że – jak pokazuje matematyka fraktalna – kształt tej skromnej paproci nie jest ani jedno-, ani dwuwymiarowy, ale sytuuje się gdzieś pomiędzy. Jaki jest zatem dokładnie kształt paproci?
Klasyczna geometria euklidesowa, które